This database contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions. Information is also given on the target sites of some anti-infective chemistries.

Other Resources


General Plant Pathology

  • Agrios, G. N. 1997. Plant Pathology. Academic Press, Inc., London.
  • de Bary, H. A. 1879. The Phenomenon of Symbiosis. Strasbourg.
  • Shaner, G., Stromberg, E. L., Lacy, G. H., Barker, K. R., and Pirone, T. P. 1992. Nomenclature and concepts of pathogenicity and virulence. Annu. Rev. Phytopathol. 30:47-66.

  • Sequenced Fungal and Oomycete Genomes

    • Cantu D, Segovia V, MacLean D et al (2013). Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics. doi: 10.1186/1471-2164-14-270
    • Wicker T, Oberhaensli S, Parlange Fet al (2013). The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet. doi: 10.1038/ng.2704
    • Gardiner DM, McDonald MC, Covarelli L, Solomon PS et al (2012). Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog. doi: 10.1371/journal.ppat.1002952
    • de Wit PJ, van der Burgt A, Okmen B et al (2012).The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. doi: 10.1371/journal.pgen.1003088
    • Amselem J, Cuomo CA, van Kan JA et al (2011). Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea PLoS Genet. doi: 10.1371/journal.pgen.1002230
    • Duplessis S, Cuomo CA, Lin YC et al (2011). Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1019315108
    • Goodwin et al (2011). Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. doi: 10.1371/journal.pgen.1002070
    • Ma LJ, van der Does HC, Borkovichet KA al (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium oxysporum. Nature. doi: 10.1038/nature08850
    • Spanu et al (2010). Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science. doi: 10.1126/science.1194573
    • Tyler et al., 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313(5791):1261-6.
    • PubMed:16946064
    • Kamper et al., 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.Nature 444(7115):97-101.
    • PubMed: 17080091
    • Dean et al., 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-6.
    • PubMed: 15846337
    • Dietrich et al., 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304-7.
    • PubMed: 15001715
    • Galagan et al., 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859-68.
    • PubMed: 12712197
    • Goffeau et al., 1996. Life with 6000 Genes. Science 274:546-566.
    • PubMed: 8849441 set undofile
    • Jones et al., 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 101:7329-7334.
    • PubMed: 15123810
    • Génolevures 2005. Genomic exploration of the hemiascomycete yeasts.
      Online: http://cbi.labri.fr/Genolevures/index.php
    • Joint Genome Institute 2005. Eukaryotic Genomes.
    • Online: http://genome.jgi-psf.org/euk_cur1.html
    • Broad Institute 2005. Fungal Genome Initiative (FGI).
      Online: http://www.broadinstitute.org/fungal genome initiative
    • Sanger Institute, 2005. Fungal genomes.
      Online: http://www.sanger.ac.uk/Projects/Fungi/

    Reviews on Pathogenicity

    Ma LJ, Geiser DM, Proctor RH et al (2013). Fusarium pathogenomics Annu Rev Microbiol. doi: 10.1146/annurev-micro-092412-155650
    Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, DiPietro A, et al. (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414-430, doi:10.1111/j.1364-3703.2010.00680.x
    Raffaele S, Kamoun S. (2012). Genome evolution in filamentous plant pathogens: why bigger can be better Nat Rev Microbiol. doi: 10.1038/nrmicro2790.
    van de Wouw and Howlett (2011). Fungal pathogenicity genes in the age of 'omics'. Mol Plant Pathol 12:507-514, doi:10.1111/j.1364-3703.2010.00680.x
    Ellis, J.G., Rafiqi, M., Gan, P., Chakrabarti, A., and Dodds, P.N. (2009). Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr. Opinion in Plant Biol. 12, 399-405.
    PubMed:19540152

    Hogenhout, S.A., Van der Hoorn, R.A.L., Terauchi, R., and Kamoun, S. (2009). Emerging Concepts in Effector Biology of Plant-Associated Organisms. Mol. Plant-Microbe Interactions 22, 115-122. PubMed:19132864
    Stergiopoulos, I., and de Wit, P.J.G.M. (2009). Fungal Effector Proteins. Annual Rev. of Phytopathol. 47, 233-263. PMID: 19400631
    PubMed:19400631

    Sexton AC, Howlett BJ., 2006. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot Cell. 5(12):1941-9
    PubMed:17041185

    Feldbrugge, M., Kamper, J., Steinberg, G., and Kahmann, R., 2004. Regulation of mating and pathogenic development in Ustilago maydis. Curr Opin Microbiol. 7:666-72.
    PubMed: 15556041

    Talbot, NJ, 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu Rev Microbiol. 57:177-202
    PubMed:14527276

    Idnurm, A., and Howlett, B. J., 2001. Pathogenicity genes of phytopathogenic fungi. Mol. Plant Pathol. 2:241-255.
    Laugé, R., and De Wit, P. J., 1998. Fungal avirulence genes: structure and possible functions. Fungal Genet Biol. 24:285-97.
    PubMed:9756710

    Knogge, W., 1996. Fungal infections of plants. Plant Cell 8:1711-1722.
    PubMed:12239359

Version: 4.4 Last revision: 10/11/2017

PHI-base is being developed and maintained by scientists at Rothamsted Research and funded by the Biotechnology and Biological Sciences Research Council (BBSRC, UK).

PHI-base is one of the ELIXIR-UK node resources.
Home | About Us | Disclaimer | Contact Us