The Pathogen-Host Interactions database: PHI-base

A database used to understand the mechanisms underlying pathogenesis (disease formation) and explore new options to protect crop, human, animal and ecosystem health

Martin Urban and Alayne Cuzick Kim Hammond-Kosack

What is PHI-base?

- Web accessible relational phenotype database that catalogues genes whose contribution to the pathogenic process has been tested experimentally
 - Manually curated by domain / species experts
 - Entries supported by peer reviewed literature references (pathogen gene deletion / gene modification vs WT strain)
 - Broad scope of pathogen and host species
 - Positive and negative data included
- Freely accessible at <u>www.phi-base.org</u> since 2005
- Regular users based in 130 countries

Winnenburg et al. (2006 and 2008) Nucleic Acids Research (Database issues)
Urban et al. (2015 and 2017) Nucleic Acids Research (Database issues)
Urban et al. (2015) Frontiers in Plant Sciences, doi: 10.3389/fpls.2015.00605
Brown et al. (2016) FEMS Microbiological Reviews 40, 19-40

Motivation for Pathogen-Host interactions database

- Major crop disease outbreaks and animal epidemics
- Emerging fungicide resistance

PHI-base is a multi-species database for fungi, protists and bacteria pathogens

65% plant pathogens, 30% human_animal_fish pathogens, 5% insect_others

Total ~ 250 pathogenic species (fixed)

Host Plant Focus

- Agricultural crops
- Horticultural crops
- Commercial trees (timber, fruit)
- Model species
- Emerging crop plant threats (pandemics)

Host Animal Focus

- Key human pathogens
- 3Rs species alternative
- Plant attacking nematodes
- Plant attacking insects

Botrytis cinerea

Fusarium oxysporum

Ralstonia solanacearum

Salmonella enterica

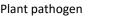
P. aeruginosa

Top 15 pathogen species in PHI-base

Xanthomonas orvzae

Ustilaao mavdis

Hyaloperonospora arabidopsidis



Cryptococcus neoformans Pseudomonas syringae

Staphylococcus aureus

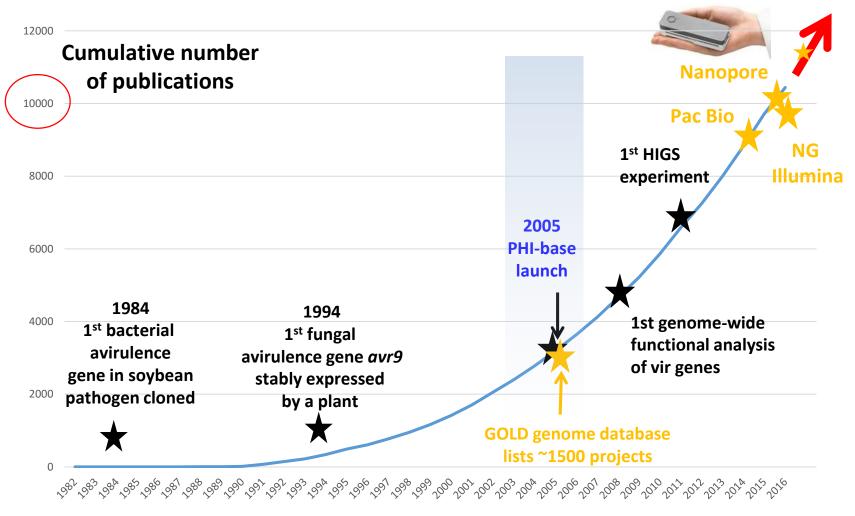
Animal pathogen

Current PHI-base version 4.6 release

	www.phibase.org	
References	3011	
Genes	6438	
Interactions	10382	
Pathogens	263	
Hosts	194	
Diseases	510	
Chemistries	34 fungicides 149 anti-infectives	

• Pathogens: 75% eukaryotes (fungi_protists), 25% bacteria

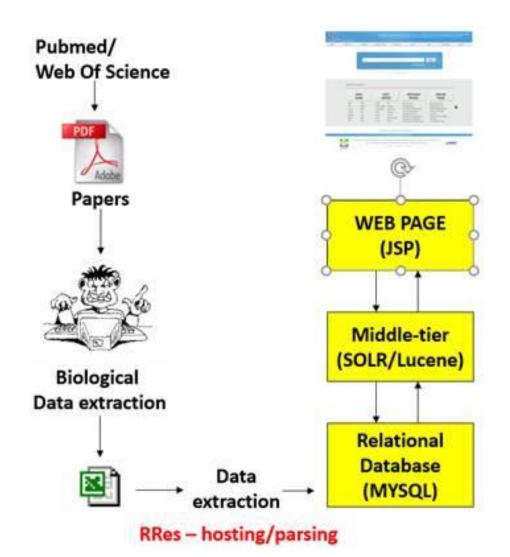
• Hosts: 65% plant (50:50 cereal:non-cereal), 30% animal_human


Entries for Key Crop and Model Plant Hosts

	Entries /	Loss of	Reduced		
Host plant	species	Pathogenicity	Virulence	Effector	TOTALS
Wheat	1350	65 (5)	382 (13)	6 (3)	453 - 34%
Barley	436	85 (4)	144 (7)	32 (3)	261 - 60%
Potato	128	1 (1)	54 (11)	8 (2)	<mark>63</mark> - 49%
Tomato	692	45 (9)	176 (17)	193 (17)	414 - 60%
Brassica	108	16 (6)	53 (10)	15 (3)	84 - 77%
Arabidopsis	347	7 (5)	94 (17)	190 (15)	<mark>291 - 84%</mark>
Tobacco (benth)	168	2(1)	30 (8)	124 (21)	156 - 93%
TOTALS (7 species)	3229 - 31%	221 - 26%	933 - 17%	568 -24%	1722 - 26%
TOTALS -PHI-base	10382	849	5488	2391	6568

Data and knowledge explosion over the last 40 years

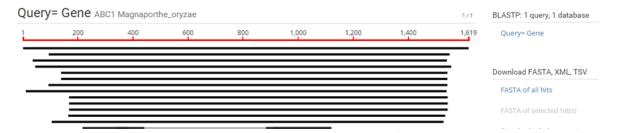
Increasing number of publications on virulence associated genes and their phenotypes in microbial pathogens (Web of Sciences/PubMed)


Miniaturisation: Minion

Database curation workflow

at RRes and Molecular Connections (MC) India

- MC: keyword searches for new papers to generate candidate list
- RRes: review of list and add in submissions from species experts/users, collect PDFs, send to MC
- MC: curation of 10 papers/week; forward data in monthly batches Up to 81 data entries / gene
- RRes: review of data
 2 database releases/year


The PHI-base interface has a faceted views to allow complete visualisation of all curated PHI-base data!

PHI - base	Pathogen Host Interactions					X		
Home	About Us Search pmk1 ① Fre		ntry with autoc	omplet	Errors SEARCH		ommunity	PHIB-BLAST Anti-infective
	RESET REFINE SEARCH	Gene	Mutant Phenotype	Pathog	en Species	Disease		Host Species
Year		E PMK1	reduced virulence	Magnap	orthe oryzae	Rice blast		Oryza sativa (related: Rice)
2010(11)		Gene ID:EH Protein ID:	cession ID:PHI:2163 IA52368.1	^	Pathogen 3 Pathogen specie oryzae Pathogen ID: 31 Pathogen strain	es:Magnaporthe	Rice) Host clas Host ID: 4 Host strai	in:CO39
Gene	\sim	-	MK1 signalling pathway	~			Tissue:ro	ots
CBP1(2)	(4)^	Essential g	ene:no					
CPKA(2)	\smile	Reference			Disease Disea	ase Process Disea	se Intervention	
EXP5(2)		Pmid:,2034	8434		Tissue:roots			
Lf pmk1(1) MST12(2) Disease	~		5/tpc.109.066340		Mutant phenoty Multiple mutatio Comments:no c		(2) Deta (3) Data	ch panel for free text il view of gene results on different tabs t view with summary of
Dry bubble disea	se(1)	Author refe	erence:Sara L. Tucker				resu for	Its with 'click-box' selection follow up T search function

PHI-base protein BLASTP search functionality

PHI - base	Pathogen Host Interactions	5								
Home	About Us	Search	Release notes	Download	Disclaimer	Errors	Help	Community	PHIB-BLAST	Anti-infective
									R	Free

Typical BLAST result output provides score list

Sequence label format: PHI-base Accession#Gene Name#UniProt Accession#Pathogen Taxon ID#Pathogen Species#Phenotype

Numb	er Sequences pro	ducing significant alignments		Total score	E value	Length
1.	PHI:132#/ BC1#	AAB86640#318829#Magnaporthe_oryzae#Red	uced_virulence	3371.64	0.00	1619
2.	PHI:26934 GcA8	C-G1#F0XP73#226899#Grosmannia_clavigera#	Reduced_virulence	2065.81	0.00	1539
з.	PHI:258#GPAB	C1#CAC40023#5128#Gibberella_pulicaris#Redu	ced_virulence	1951.81	0.00	1491
	4, 5. 6.	PHI:543#BCATRD#CAC41639#40559#Botrytis_cinerea#Unaffected_pathogenicity PHI:1159#MgAtr7#A5H456#54734#Mycosphaerella_graminicola#Chemistry_target PHI:867#MgAtr7#ABN41482#54734#Mycosphaerella_graminicola#Unaffected_pathogen	1722.98 0.00 1501	,		
	7. 8. 9.	PHI:2815#pdr15#Q04182#4932#Saccharomyces_cerevisiae#Unaffected_pathogenicity PHI:310#MgAtr4#AAK15314#54734#Mycosphaerella_graminicola#Reduced_virulence PHI:2309#BcatrB#Q9UW03#40559#Botrytis_cinerea#Reduced_virulence	and high level phenotype		Back to F	PHI-base

891.34

0.00 1439

Ref: http://www.sequenceserver.com/

PHI:1160#BcatrB##40559#Botrytis_cinerea#Chemistry_target

10.

Main uses of PHI-base

> 330 publications citing PHI-base

All papers are cited in the about section of the database

- Quick lookup of gene mutant_ phenotype relationships (human readable knowledge database/computer readable)
 key word search, BLAST tool and a full download function
- Provide phenotype annotations for genome browsers and knowledge networks

- Annotate novel datasets for candidate gene selection: Newly sequenced pathogen genomes or exploring variomes (variant genomes) RNA-seq and microarray data sets (enrichment of virulence genes) Other candidate gene lists (i.e. from forward genetics screens)
- Comparative genomics/phenomics
 - Conserved themes vs species-specific differences
 - In silico predictions of candidate virulence using protein-protein interaction networks

Nine high level PHI-base phenotype outcomes

Generic (species neutral) terms to permit wide inter-species comparisons

- 1. Loss of pathogenicity
 2. Reduced virulence
 3. Increased virulence

 - 4. Unaffected pathogenicity
- 5. Effector (transferred 'entity' in an interaction)
 - 6. Enhanced antagonism (endophytes)
 - 7. Essential
 - 8. Resistance to chemistry
 9. Sensitive to chemistry

Terms are routinely published in research articles but mapping to GO terms is not supported due to their high-level nature.

Urban et al. (2015), Frontiers Plant Science, doi: 10.1093/nar/gku1165

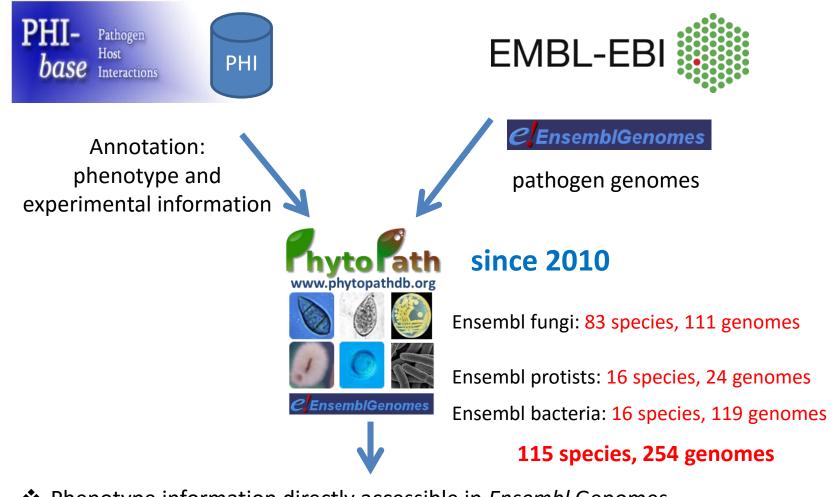
Virulence terms

High level phenotypes are assigned to each host-pathogen interaction

An **interaction** is defined as the function of one gene, on one host and one tissue type from one publication. **One high-level phenotype term is assigned.**

۲ *Tri5* mutant

Pathogen species: Fusarium graminearum

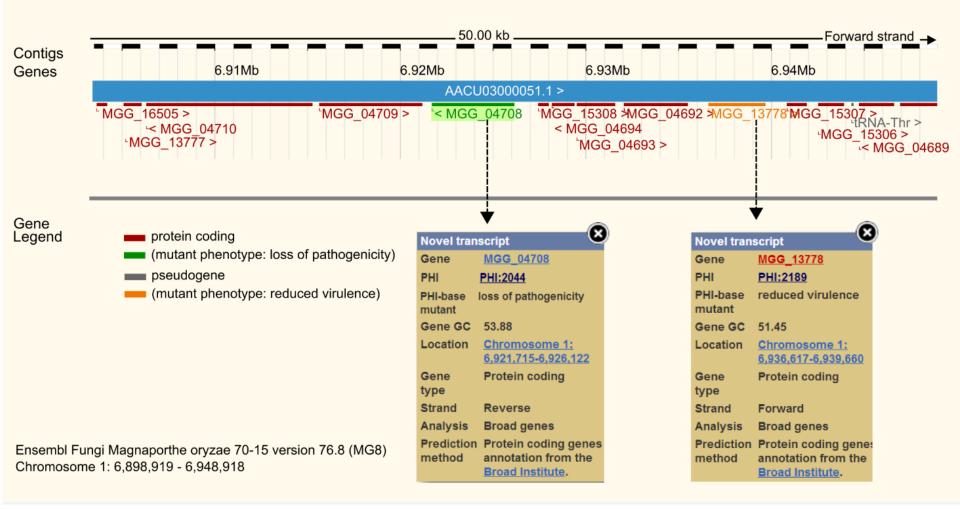

	Host/tissue	Interaction	Phenotype
	Wheat ear	1	Reduced virulence
Jug	Wheat seedling	2	Reduced virulence
	Maize cob	3	Unaffected pathogenicity

This permits narrow and wide intra- and inter-species comparisons

Summary of phenotypic outcome content in PHI-base

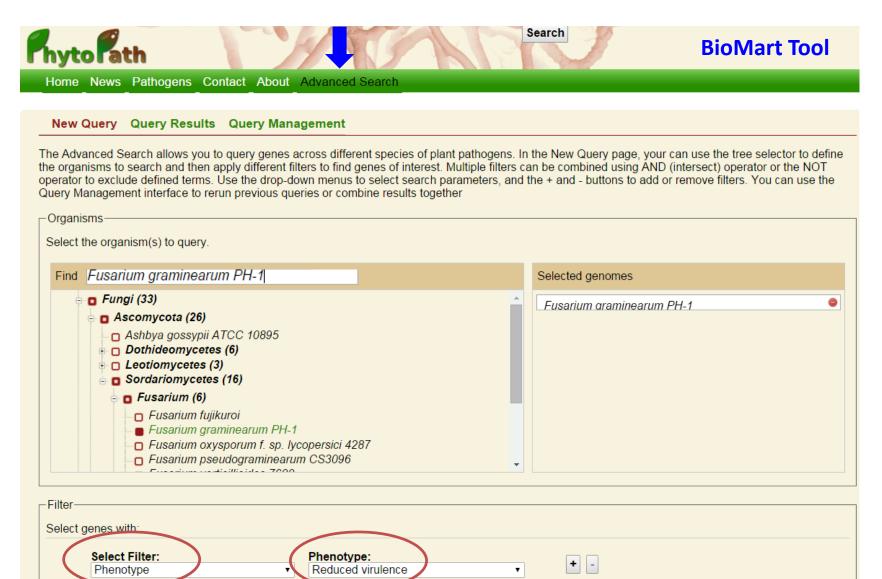
PHENOTYPIC OUTCOME	%
Loss of pathogenicity	8.6%
Reduced virulence	39.4%
Increased virulence	4.0%
Unaffected pathogenicity	24.9%
Effector (transferred 'entity')	20.6%
Enhanced antagonism	0.1%
Essential	1.9%
Resistance to chemistry	0.4%
Sensitive to chemistry	0.1%

Integration of PHI-base data with Ensembl Genomes


- Phenotype information directly accessible in *Ensembl* Genomes
 BioMADT secret of DUI base suprestated with easy server.
- BioMART search of PHI-base annotated pathogen genes

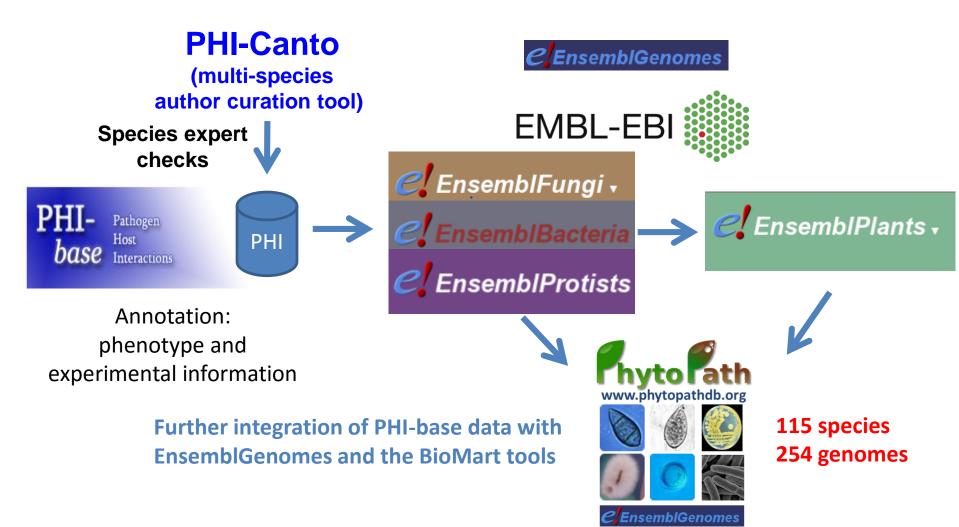
Display phenotypes directly in genome browser

Ensembl Fungi

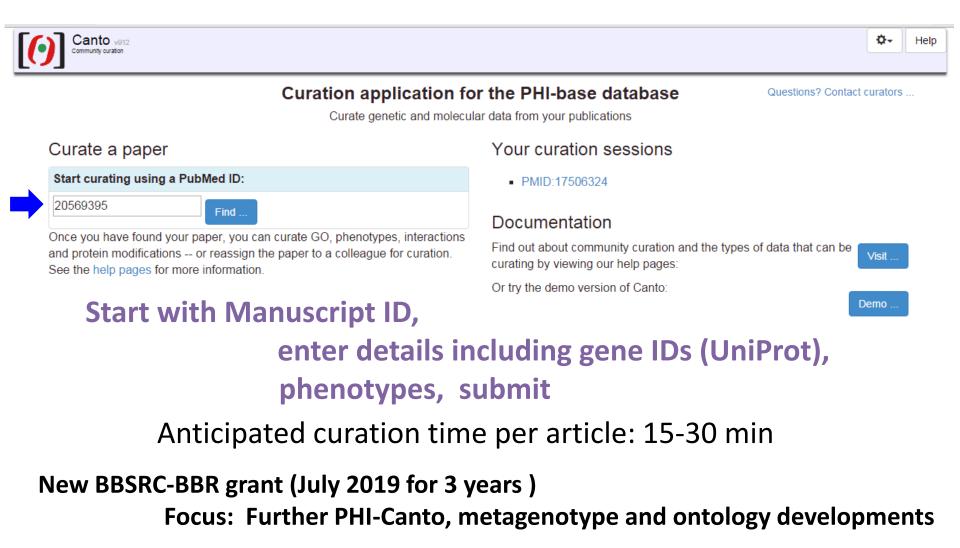


Magnaporthe oryzae Magnaporthe oryzae 70-15

http://fungi.ensembl.org


Search Fusarium graminearum genomes by phenotype

www.phytopathdb.org


Two NEW functionality for PHI-base since 2017

Curation of the 1st HOST TARGETS in plants of pathogen effectors

Community multi-species curation tool for authors PHI-Canto

http://demo-canto.phi-base.org (beta version)

From genes to mutant phenotypes

Summary

- PHI-base is a multi-species microbial mutant database with wide range of crop and non-crop plants and **an increasing number of 1st host targets**
- PHI-base is a FAIR database and part of the Elixir 'Data for Life' project since 2016
- Use for the researcher: access to published phenotypes and genotypes on pathogens and hosts provides instant phenotype annotation to genomes, transcriptomes enables searches across any species and any taxonomies
- Computational applications: use of controlled vocabularies (PHI-PO ontologies) allows computers to analyse a model phenotype data sets
- Community annotation tool:
 - will allow authors to curate their own data
 - advantage: high visibility of own research to increase citation number

Acknowledgements

Rothamsted Research

Kim Hammond-Kosack Martin Urban Alayne Cuzick James Seager Barnaby Norman Dan Smith Chris Rawlings William Brown Keywan Hassani-Pak

Valerie Wood Kim Rutherford Midori Harris

www.phi-base.org

Phytopath team @ EBI

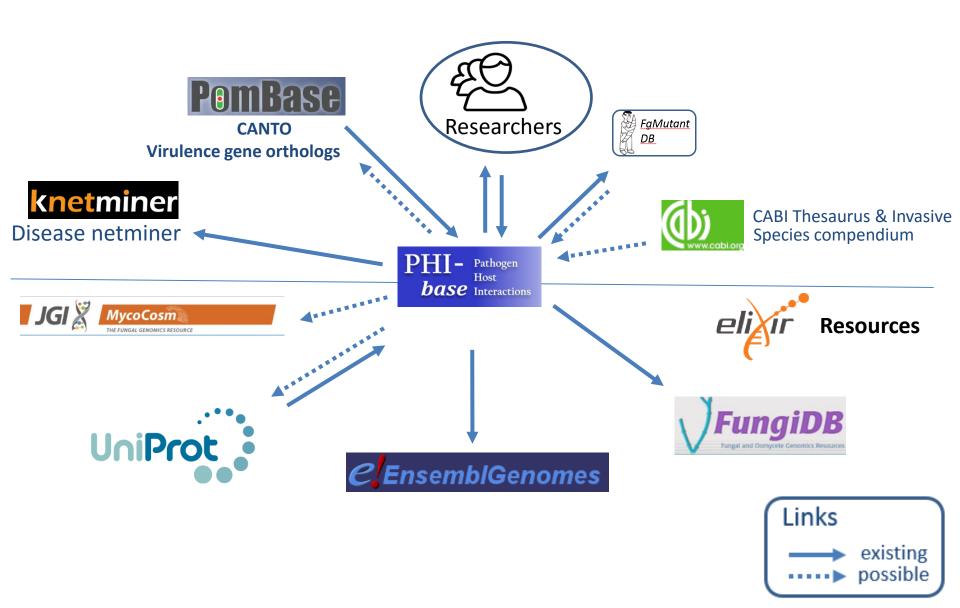
Individual species experts

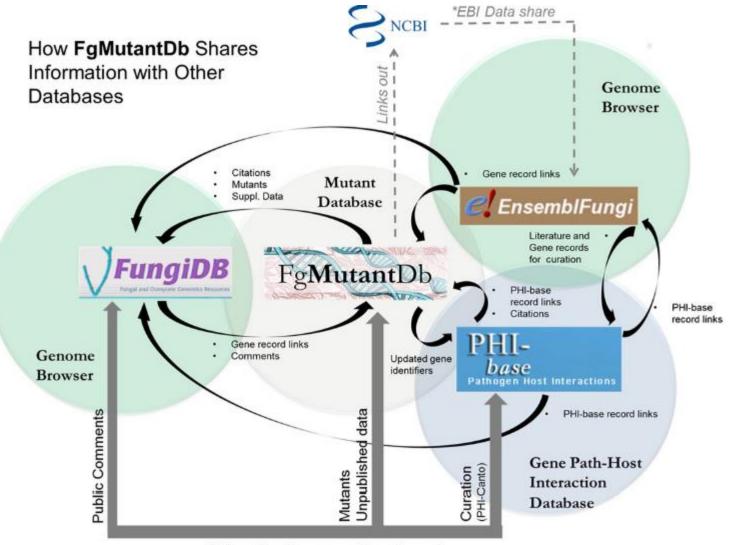
Paul Kersey Helder Pedro Uma Mareshwari

Collaborators

globally (~50)

Nishadi De Silva Manuel Carbajo

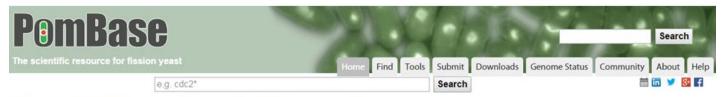


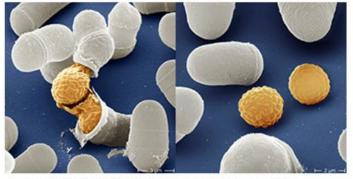

Thank you

Extra Slides

PHI-base Universe

PHI-base users/associated databases





Sites for Researcher Input

*New entries into NCBI, Genbank, or another public repository are shared by EBI every 3 months. All new publically available data are released in the next version of Ensembl. Authors can edit Genbank entries to be available in the next Ensembl release.

Developing a community curation tool for authors

S. pombe spores and vegetative cells by scanning electron microscopy. Juergen Berger, Maria Langegger and Silke Hauf

Did You Know ... ?

Community curation at PomBase

PomBase has pionnered a community curation system that enables researchers to contribute publication-based annotations directly to database curators. By involving bench scientists directly in the curation process, PomBase improves the timeliness and depth of its annotations, and raises awareness of the value curation adds to scientific databases and literature. Like all annotations in PomBase, community contributions are shared among databases such as GO, BioGRID, UniProtKB, etc. If you have a publication that you would like to curate for PomBase, you can go to the curation tool, Canto, and search for its PubMed ID, or contact the PomBase curators via the helpdesk.

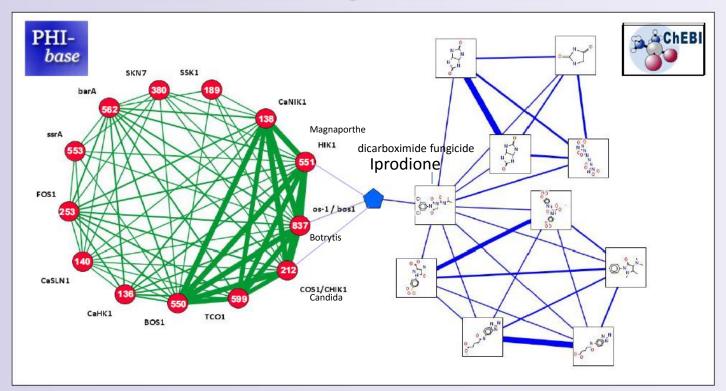
Welcome to Canto

Canto is an online annotation tool which has been developed to allow researchers to curate the genetic and molecular data from their publications for inclusion in public biological databases. Originally created for the fission yeast community, Canto is a generic tool that can be readily configured for use with other organisms and other databases.

Questions? Contact the Canto team ...

Canto in Use

Canto is currently deployed for:


 Schizosaccharomyces pombe (fission yeast) at PomBase. Curate GO, phenotypes, interactions, protein modifications for inclusion in PomBase

Visit ...

- · Komagataella pastoris (formerly known as Pichia pastoris)
- Generic Gene Ontology Implementation: Curate GO annotations for proteins, using UniProtKB identifiers.

Multi-species chemogenomics approach

Data integration of PHI-base and ChEBI databases

The blue pentagon indicates where a gene mutation confers resistance to iprodione. Green edges (left) show the sequence similarity derived by reciprocal BLASTP to other PHI-base accessions (white number in red circle). Blue edges (right) show the Tanimoto similarity to other chemicals stored in ChEBI (de Matos et al, 2012).

Collaboration with Mark Wilkinson (Spain) – A FAIR version of PHI-base for plant pathogens

Conforms to each of the FAIR Principles

2016 International proposition - all scientific data should be "FAIR"— **Findable, Accessible, Interoperable, and Reusable.**

May 2016

TECHNOLOGY REPORT published: 12 May 2016 doi: 10.3389/fpls.2016.00641

Publishing FAIR Data: An Exemplar Methodology Utilizing PHI-Base

Alejandro Rodríguez-Iglesias^{1†}, Alejandro Rodríguez-González^{2†}, Alistair G. Irvine³, Ane Sesma¹, Martin Urban⁴, Kim E. Hammond-Kosack⁴ and Mark D. Wilkinson^{1*}

¹ Center for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Madrid, Spain, ² ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Madrid, Spain, ³ Department of Computational and Systems Biology, Rothamsted Research, Harpenden, UK, ⁴ Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, UK

User contribution invited to

PHI-base: contact@phi-base.org

- suggest articles for curation by email
- inform us on annotation mistakes/paper retractions
- Authors asked to submit novel isolate specific gene sequences to Genbank/EMBL to help link published phenotypes to new alleles
- > publish negative data sets on genes not involved in virulence

Try out the new author curation tool PHI-CANTO
PhD students, Post-Docs and PIs

Table 1. Multispecies databases and websites involving plant, human and/or animal infecting pathogens which contain information complementary to the data in PHI-base

Name and ref ^a	URL (http://)	Comments
Broad-Fungal Genome Initiative	www.broadinstitute.org/scientific-community/	Genome browsing and comparative analysis for
DFVF (12)	science/projects/fungal-genome-initiative sysbio.unl.edu/DFVF	several plant pathogen division Fungal virulence factor database generated using text-mining of the PubMed database and Internet
e-Fungi (13)	www.cs.man.ac.uk/~cornell/eFungi	Rich source of ESTs obtained by Sanger sequencing
Ensembl Genomes (14)	www.ensemblgenomes.org	Non-vertebrate species genomes portal with links to bacteria, fungi, metazoa, plants and protists
Ensembl Bacteria	bacteria.ensembl.org	Genomes of bacterial and archea
Ensembl Fungi	fungi.ensembl.org	Genomes of fungal species including fungal pathogens
Ensembl Protists	protists.ensembl.org	Genomes of protist species including
		Phytophthora
Oomycetes Transcriptomics Database (15)	www.eumicrobedb.org/transcripts	Oomycete genomes and transcriptomics
EuPathDB (16)	eupathdb.org	Human pathogens
FRAC	www.frac.info	All known chemical target sites used commercially for the control of pathogens
FungiDB (17)	fungidb.org	Fungal genomics database providing graphical tools for data mining
HPIDB (18)	agbase.msstate.edu	Fifteen human virus pathogens-protein-protein interaction data
JGI-MycoCosm (19)	genome.jgi.doe.gov/programs/fungi	A genome portal for 100s of pathogenic and non-pathogenic fungal species
Pathogen Portal	www.pathogenportal.org	Emerging or re-emerging pathogens, potential biowarfare or bioterrorism pathogens
PHIDIAS (20)	www.phidias.us	Medical fungal and bacterial pathogens
PhytoPath	www.phytopathdb.org	PhytoPath-32 Fungi, 14 Protists, 12 bacterial species linked to PHI-base
PLEXdb (21)	www.plexdb.org	Transcriptomics data only on plants, pathogens
USDA	nt.ars-grin.gov/fungaldatabases	and during interactions Description of all the known hosts of fungi which
VFDB (22)	www.mgc.ac.cn/VFs	infect plants Virulence factors of human and animal bacterial pathogens

^aReference provided where available.